59561 - Ranking of Aircraft Fuel-Injectors Regarding Low Frequency Thermoacoustics Based on an Energy Balance Method
Many modern low emission combustion systems suffer from thermoacoustic instabilities, which may lead to customer irritation (noise) or engine damages. The prediction of the frequency response of the flame is oftentimes not straightforward, so that it is common practice to measure the flame response in an experiment. The outcome of the measurement is typically a flame-transfer-function (FTF), which can be used in low order acoustic network models to represent the flame. However, the use of an FTF for entropy wave type instabilities can be questionable. This paper applies an alternative criterion to evaluate the potential of the flame to become instable, the flame amplification factor (FAF). It is based on an energy balance method and can be directly derived from the measured flame transfer matrix (FTM). In order to demonstrate this approach various kerosene-driven aircraft fuel injectors were measured in the Rolls-Royce SCARLET rig in a single-sector RQL-combustor under realistic operating conditions. Here the multi-microphone method has been applied with acoustic forcing from up- and downstream side to determine the FTM. In contrast to the FTF-approach the full FTM data has been post-processed to derive the FAF. The FAF is then successfully used to rank the fuel injectors regarding their low frequency thermo-acoustic behaviour.
Ranking of Aircraft Fuel-Injectors Regarding Low Frequency Thermoacoustics Based on an Energy Balance Method
Paper Type
Technical Paper Publication
Description
Session: 04-07 Combustion Dynamics: Flame Transfer Functions
Paper Number: 59561
Start Time: June 7th, 2021, 04:00 PM
Presenting Author: André Fischer
Authors: André Fischer Rolls-Royce Deutschland
Claus Lahiri Rolls-Royce Deutschland