Vibration Analyses of an Axial Turbine Wheel With Intentional Mistuning
The last stage bladed disk of a steam turbine is analyzed with respect to both flutter susceptibility and limitation of forced response. Due to the lack of variable stator vanes unfavorable flow conditions may occur which can lead to flow separation in some circumstances. Consequently, there is the risk of flutter in principle, particularly at nominal speed under part load conditions. For this reason, intentional mistuning is employed by the manufacturer with the objective to prevent any self-excited vibrations. A first step in this direction is done by choosing alternate mistuning, which keeps the manufactural efforts in limits since only two different blade designs are allowed. In this sense, two different series of blades have been made. However, it is well known that small deviations from the design intention are unavoidable due to the manufacturing procedure, which could be proved by bonk tests carried out earlier. The influence of these additional but unwanted deviations is considered in numerical simulations. Moreover, the strong dependence of blade frequencies on the speed is taken into account since it significantly attenuates the blade to blade frequency difference in this particular case.
Within an academic study the turbine wheel is modelled as blade integrated disk in order to demonstrate fundamental effects of intentional mistuning on flutter susceptibility and forced response. For that purpose, reduced order models are built up by using the subset of nominal system mode approach introduced by Yang and Griffin [1], which conveniently allows for taking into account both differing mistuning patterns and the impact of aeroelastic interaction. Focusing on the first flap mode it could be shown that a mitigation of flutter susceptibility is achieved by prescribing alternate mistuning, which indeed affects an increase of originally small aerodynamic damping ratios. Nevertheless, the occurrence of negative damping ratios could not be completely precluded at part load conditions. That is why optimization studies are conducted based on genetic algorithms with the objective function of maximizing the lowest aerodynamic damping ratios. Again only two different blade designs are admitted. Finally, mistuning patterns could be identified causing a tremendous increase of aerodynamic damping ratios. The robustness of the solutions found could be proved by superimposing additional random mistuning. Another study is focused on the impact of mistuning strength.
Further analyses are addressing the forced response at part speed conditions, where different resonance crossings are becoming apparent in the Campbell plot. An increase of the forced response compared to the tuned counterpart is partly unpreventable because of unfavorable aerodynamic damping curves. Independently, the maximum forced response has to be limited also in case of applying large intentional mistuning.
[1] Yang, M. T., Griffin, J. H., „A Reduced-Order model of Mistuning Using a Subset of Nominal System Modes“. J Eng Gas Turb Power, 123, pp. 893-900 (2001).
Vibration Analyses of an Axial Turbine Wheel With Intentional Mistuning
Category
Technical Paper Publication
Description
Session: 26-03 Mistuning II
ASME Paper Number: GT2020-14468
Start Time: September 21, 2020, 12:45 PM
Presenting Author: Bernd Beirow
Authors: Bernd Beirow Brandenburg University of Technology
Arnold Kuehhorn Brandenburg University of Technology
Robby Weber Brandenburg University of Technology
Frederik Popig Siemens AG